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RESEARCH SUMMARY

A mathematical model is developed that describes the convective
flow of air up a sun-heated open slope under conditions of general
calm. The model predicts quantitatively most of the features of the
"slope wind" long recognized by practitioners of fire behavior and
fire weather prediction. A limited first test of the model gave en-
couraging results. The model is applied to the calculation of mid-
flame windspeeds for stylized fuel models used in current wildland
fire behavior prediction techniques. Equations, graphs, and tabu-
lated midflame windspeeds are presented. Further testing is needed
to validate the predictions of the model; in the interim, the tables
given here can be used as the best presently available data.



INTRODUCTION

Upslope winds are evidenced under otherwise calm conditions on open, sun-heated

slopes. These local winds are the direct result of the heating of the air next to the

slope. Althougli these winds are of modest force, their influence should be accounted for

in wildland fire spread projections. The general features of the upslope convective wind-

field are well described by Schroeder and Buck (1970] as ''slope winds":

Slope winds are local diurnal winds present on all sloping surfaces.

They flow upslope during the day as the result of surface heating, and down-
slope at night because of surface cooling. Slope winds are produced by the
local pressure gradient caused by the difference in temperature between air
near the slope and air at the same elevation away from the slope.

During the daytime the warm air sheath next to the slope serves as a

natural chimney and provides a path of least resistance for the upward flow
of warm air- •

• . Upslope winds are quite shallow but their depth increases
from the lower portion of the slope to the upper portion- ••.

Although experienced firefighters and students of wildland fire behavior have long
been aware of the upslope convective wind phenomenon, no theoretical or empirical model

of the process has been available to permit quantitative estimates of expected windspeeds.
The procedures available to the trained fire behavior officer in the form of field refer-
ence material^ and pocket calculator programs (Burgan 1979) allow rapid prediction of

wildland fire behavior once the necessary input data are assembled. In these procedures,
the influence of wind on fire behavior is derived from the "midflame windspeed," or the
average speed of the ambient windfield over the vertical extent of the flame. The field
reference material contains aids for estimating surface speed and direction for general
winds, and for calculating midflame windspeeds (Baughman and Albini 1980). This paper pro-
vides the equivalent procedure for the upslope convective wind.

Note that prediction of the upslope convective vvrind is not connected in any way to

the prediction or description of the windfield associated with a fire. The "midflame wind-
speed" is an ambient windspeed used in fire behavior prediction. It enters into the rate-
of-spread calculation as a parameter that empirically corrects rate of spread and other
fire behavior calculations. The windfield in the near vicinity of, and especially further
up the slope than, a fire on a slope will differ from that predicted by the model presented
here. The fire behavior model of Rothermel (1972) implicitly accounts for the indraft wind
induced by a fire on a slope, through the "slope factor" multiplying the rate of spread.
We seek here only to characterize the additional influence of an ambient windfield that
would exist in the absence of a fire, in the manner described by Albini and Baughman (1979).

A mathematical model for this windfield is derived in appendix A. The basic relation-
ships included in the model express (1) a balance between the buoyancy force (the "pressure
gradient" mentioned above) and the friction of the air flow along the surface, (2) a balance
between the heat absorbed by the air from the warm slope and the carrying away of this heat
by the motion of the air, and (3) a balance between the buoyancy force that acts to lift the
air sheath off the slope and the action of turbulence produced by the air motion which acts
to restrain it (the "natural chimney" mentioned above)

.

^National Wildfire Coordinating Group, 1979. Fire Behavior Officer's Field Reference,
USDA For. Serv. Natl. Adv. Resource Technol. Cent., Marana Air Park, Ariz., looseleaf.
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A more comprehensive model for slope winds, including both downslope ("drainage") and

upslope ("convect ive") winds has been assembled by Ryan (1977) and incorporated into a

broadly applicable simulation model. For predicting smoke transport and dispersal or simply
to generate a map of surface winds in mountainous terrain, such a complex model is required.
For the more limited application intended here, a simpler and more easily applied formula-
tion was desired. Ryan's (1977) model gives explicit time-dependent predictions not only
of windspeed but of direction, but the near-surface flow structure (i.e., the shear layer
described in appendix A) is not specifically addressed.

The weakest assumption made in the course of developing the present model is that the
surface of the slope has the same temperature at all elevations. If the source of heat is

the sun's rays, this assumption can be defended by the argument that the temperature of the
surface should be very nearly that which achieves a balance between the rate of solar heat
absorption and the rate at which it is radiated away by the surface. This means that the
amount of heat carried away by the air sheath and that conducted into the ground are both
small compared to the incident solar heating and the re-radiated heat loss. This implied
balance does not depend on elevation and is such a weak function of slope angle (for summer
afternoons in midlatitudes) that the surface temperature of the valley floor should closely
approximate the temperature of the slope surface. This fact is used in applying the model
results to provide a very simple means of estimating midflame windspeeds.

WIND MODEL RESULTS

The idealized situation addressed by the mathematical model of appendix A is shown
schematically in figure 1. This sketch shows a short segment of a sun-heated slope inclined
at an angle a to the horizontal. The wind blows upslope, parallel to the inclined surface.
The windspeed is zero at the surface, increasing to a maximum value of u at a distance £

from the surface, as shown.

NORfVlAL DIRECTION

(Y COORDINATE)
WINDSPEED

SUN- HEATED

SLOPE

Figure 1 .- -Windspeed and temperature profiles in the near-surface layer of a sun-heated
slope. Note that the y coordinate used to express model results is oriented perpendi-
cular (or "normal") to the sloping surface. The windspeed reaches a maximum (u^) at a

^ from the surface, while the temperature excess falls from 6^ at the surfacedistance £,

to zero at a distance of 29,



In the warm sheath of air over the surface, the temperature excess above the local

ambient also varies with distance from the slope surface. The excess temperature is maxi-
mum at the surface and declines to zero at distance of 2% from the surface, as shown.
Using the coordinate y to measure distance from the slope in tlie direction perpendicular
to the slope, the variation of excess temperature (9) and windspeed (u) with distance can
be written as:

e = e^cos(^y/£jexp(- ^ y/y (1)

These profiles are accurately graphed in figure 2 up to the distance y = £ . The varia-
tions expressed in equations (1) and (2) are thought to be accurate up to ?hat distance but
incorrect beyond the distance y = 2£ . Between £ and 2£ the values are probably accurate

^ -^m mm r/
enough tor present purposes.

0.2 0.4 0.6 0.8 1.0

RELATIVE WINDSPEED OR EXCESS TEMPERATURE

Figure 2. --Profiles of temperature excess and windspeed on a sun-heated
slope, as predicted by the mathematical model of appendix A.

The windspeed and excess temperature maxima are, of course, related. The higher the
excess temperature, the greater the buoyant force to be countered by friction, so the
greater the windspeed. This model fixes the relationship as linear:

u = exp(-TT/4) (C /2T )
^^^0

(3)m ^ ^ ^ p a

where

C is the specific heat capacity of air at constant pressure =

P 7-7-1 7-7-1
1005 m s °K = 6010 ft s °R

T is the absolute temperature (°K or °R) of the atmosphere, free of
a

the slope influence, at the elevation in question.
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If the ambient temperature is taken to be 32°C (90°F) or, in absolute degrees 305°K (549°R)

,

then
:0.6 e m/s,
I o

[i.i ft/s,

O /~i

in C

Ot-'
in F

,

(4)

The normal distance from the surface of the slope to the maximum windspeed, I , is

related to the maximum windspeed by an internal consistency requirement outlined in appen-

dix A. The relationship that results from this argument is again linear and involves the
angle of the slope:

I = 0.0158(C T )m pa
1/2

u /g sin a
m ^ (5)

Using the same ambient
2 2

where g is the acceleration of gravity = 9.81 m/s (32.2 ft/s )

temperature as before, this can be expressed simplv as the ratio of Z and u measured in^
,

r . y mm
seconds

:

£ /u
m m

0. Vsin a, (6)

This equation is graphed in figure 3. It is necessary to make use of this relationship to
estimate midflame windspeed for some types of fuels.

1/5

Q
LU
LU
Q-
OO

10 r-

J L

Figure 3. --Ratio of the normal
distance of the maximum wind-

speed to the maximum wind-

speed, expressed in seconds.

20 40 60

SLOPE (PERCENT)

100

The model results give quantitative expressions for the qualitative descriptions of

the flow features quoted above from Schroeder and Buck (1970). Equation (4) expresses the

relationship between the temperature excess on the surface of the slope and the maximum
upslope windspeed. 2 The hotter the slope, relative to the temperature of the atmosphere

^Equation 4 also implies the direction of the wind. If slope surface cools, the im-

plication of (4) is that the wind blows downslope, as it should. Nevertheless, the model
should not be used for downslope winds because important physical factors have not been
accounted for.
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at the same elevation, the greater the induced windspeed. Because the temperature of the

atmosphere on summer afternoons decreases with height, and the slope-surface temperature
is assumed to be constant, the excess temperature on the slope surface increases with ele-

vation above the valley floor. This implies greater windspeeds higher up the slope.

The excess temperature on the slope surface. is determined by establishing the

air temperature at the surface and subtracting the temperature of the free atmosphere at

the elevation in question. On calm, sunny days, the temperature lapse rate of the air
immediately above the ground exceeds the dry adiabatic rate. Data given by Sutton (1953)

and Geiger (1966) indicate that this overwarm layer is about 100 m deep above a flat, grass-

covered surface. The temperature at the surface is 4-5°C above the extrapolated dry adia-

batic level. This value is supported by data from Lettau and Davidson (1957) that show
temperature differences of about 5°C between 0.1 m and 16 m above mown grass on sunny
afternoons

.

Probably no exact value can be found to represent the temperature difference between
the surface air and the air at the height where the dry adiabatic lapse rate begins during
the hottest part of sunny days, but based on the above we shall use 5°C for our purposes.
So e can be approximated as 5°C plus the drop in temperature to the elevation of the
poin? on the slope for which 9^ is being estimated. That is:

!5.0
+ O.Olz, °C (z in m)

9.0 + 0.0055Z, °F (z in ft)
(7)

where z is elevation above the valley floor. This simple form, used with (4), gives the
maximum upslope convective windspeed as:

u =
m

^3.0 + 0.006Z, m/s (z in m)

[9.9 + 0.006Z, ft/s (z in ft)

.

This equation is graphed in figure 4.

(8)

Figure 4. --Maximum upslope convective
windspeed versus elevation above
valley floor.

500 1000

ELEVATION ABOVE VALLEY FLOOR

1500 FT
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The ''depth" of the slope wind layer can be taken as £ . Equation (6) indicates that
this depth grows linearly with u and hence increases with distance up the slope.
It also indicates that the depth decreases as the slope gets steeper, an intuitively ap-

pealing dependence.

Measurements in the field are often made at distances from the slope, y, which are

small compared to P, , the depth of the wind layer. In this case, the general equation (2)

for variation of windspeed with perpendicular distance from the slope reduces to:

u = (TT/2/2)exp(7T/4)u (v/£ ), v<<£ . (9)m ' m ' m ^

Now put in u 1 1 from equation (6), and:
^ mm
u/y = 2.74 sin a, s'"^. (10)

This means that if the distance from the slope is small compared to the distance to the
maximum windspeed, the measured windspeed is independent of the elevation of the measuring
point above the valley floor.

One can use a relationship much like (10) in applying the model results to fire be-

havior prediction for quickly estimating midflame windspeed. A "global" approximation of

the lower. part of the profile is:

u/u i 2v/£ . (11)
m - m

Equation (11) underpredicts the windspeed slightly for y/£ less than 0.25 and overpredicts
slightly for y/?, greater than 0.25. But over the whole range from to 0.4, it is a good
approximation, as can be verified by overlaying a straightedge on figure 2.

TEST OF THE MODEL

Windspeed, temperature, and humidity were continuously m.onitored for about one year
on the site of an experimental prescribed burn area near the Northern Forest Fire Labora-
tory. These data afforded the opportunity to test the model developed here. The site was

a small valley on the east fork of O'Keefe Creek, about 10 miles northwest of Missoula, Mont.

The valley is about 4.8 km (3 mi) long and 1.6 km (1 mi) wide. Windspeed measurements
were taken at an elevation 140 m (460 ft) above the creek on a south-facing 22 percent slope,
covered by a mixture of grass, shrubs, and an open stand of ponderosa pine. The anemometer
was located about 6.1 m (20 ft) above a grassy portion of the slope, about 90 m (300 ft)

upslope of the nearest trees.

Recordings were made by a 3-cup anemometer that made an electrical contact, causing
a mark on a paper chart for each 5 miles of air passage (i.e., each 5 mile wind run). The
contacts were recorded on a hygrothermograph chart, which provided a time reference.

Review of the synoptic charts and daily readings from the local National Weather Ser-

vice station (located at the Missoula airport, about 4 miles from the observation site)
revealed that there were five sunny days during the recording period of 1979 on which the
general winds- were light enough to allow measurement of the upslope convective windspeed.

Because maximum winds and heating were desired for the days in question, wind-run charts
were examined for maxima during the afternoon hours (1400-1800 LDT) . The maximum velocity
for a 10 mile run, i.e., two successive 5 mile runs, vs'as taken as data for model verification.
These data are given in the following tabulation:
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Date

(1979)

Recorded maximum
windspeed, mi/h

7/24
8/2

8/4

8/7
9/7

4.2

5.7
5.5

5.7
5.7

Average
Standard deviation

5.36 mi/h (2.39 m/s)

0.65 mi/h (0.29 m/s)

The model predicts a maximum upslope windspeed of 3.85 m/s (fig. 4) at a normal dis-

tance from the slope of 16.2 m (fig. 3). At^ the instrument height of 6.1 m, or 0.35 of

the normal distance to the maximum windspeed, figure 2 indicates a sensed windspeed of

0.64 times the maximum, or 2.46 m/s (5.51 mi/h).

The degree of agreement between the predicted and observed windspeeds is gratifying,
but obviously not a rigorous test of the model. The near-constancy of the maximum recorded
windspeeds on different days is likewise not conclusive but is encouraging.

Midflame windspeeds can be calculated using the model presented here, once the geo-

metry of the fuelbed and the flame above it are established. Using the assumptions and

mathematical manipulations outlined in appendix B, tables of midflame windspeeds were de-

veloped for the 10 stylized fuel models that might be used for predicting fire behavior
on open slopes. Fuel models 7, 8, and 9 were not included because they are used only for
fuels under standing timber (Albini 1976). ^1odel 10, also an understory fuel model, is

sometimes used to represent logging slash overgrown with shrubs, grasses, and forbs, so

was included. Tree cover on the slope both interferes with the solar heating of the sur-

face and obstructs the development of the convective windfield, therefore the model cannot
be used for tree-covered slopes.

Two cases were considered:

1. The slope is uniformly covered with the fuel model below the fire site, and

2. The slope below the fire site is free of cover.

The first situation might represent a prescribed burn, an ignition on the slope, or

a fire backing down the slope. The second situation might represent a slope with a rock

or scree face, or a fire burning upslope from near the base.

^Both instrument height and distance to the maximum windspeed should be adjusted for

displacement of the zero-windspeed surface (appendix B) , but the unknown cover height pre-

vents this step. Doing so would raise the predicted windspeed slightly.

APPLICATION TO FIRE BEHAVIOR PREDICTION
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The fuel models used can be divided into "shallow" and "deep" fuelbeds. The "shallow"
fuelbeds, represented by models 1, 2, 5, 6, 10, and 11, have fuelbed depths and typical
flame heights small enough that the variation of windspeed with distance from the slope
given in equation 10 is a good approximation in all cases. Midflame windspeeds for these
models are thus a function of slope only. Table 1 gives midflame windspeeds for these
models

.

The "deep" fuelbeds, represented by stylized models 3, 4, 12, and 13, exhibit some
degree of dependence of midflame windspeed on both slope and elevation above the valley
floor, because the fuelbed depths and flame heights exceed the linear windspeed-vs .

-

distance regime for which equation 10 applies. Table 2 gives the midflame windspeeds for
these models for the case of uniform cover below the fire site. For the case of a bare
slope below the fire site, use table 3.

Table 1. Midflame windspeeds (mi/h) for "shallow" fuelbeds with upslope convection winds

Slope below fire site uniformly vegetated

Fuel model
20 30

Slope percent

40 50 60 70 80 90 100

1. Short grass 0.3 0.4 0.5 0.6 0.7 0.8 0.8 0.9 0.9

2. Open timber (grass
and understory)

5 . Brush

6. Dormant brush,
hardwood slash

1.0 1.1 1.2 1.3

.7 .8

1.0 1.2

.9

1.3

1.0 1.1

1.4 1.5

1.2

1.6

10. Overgrown slash .4 .5 .7 .8 .9 1.0 1.1 1.2 1.3

11. Lioht conifer slash .3 .4 .5 .6 .7 .8 .9 .9 1.0

Slope below fire site free of vegetation

1. Short grass 0.5 0.8 1.0 1.2 1.4" 1.5 1.6 1.8 1.9

2. Open timber (grass .6 .9 1.2 1.4 1.6 1.8 1.9 2.1 2.2

and understory)

5. Brush .9 1.3 1.6 1.9 2.2 2.4 2.6 2.8 2.9

6. Dormant brush, 1.1 1.6 2.1 2.5 2.8 3.1 3.3 3.5 3.7
hardwood slash

10. Overgrown slash .6 .9 1.2 1.4 1.6 1.8 1.9 2.1 2.2

11. Light conifer slash .6 .8 1.0 1.2 1.4 1.6 1.7 1.8 1.9

8



Table 2. Midflame windspeeds (mi/h) for "deep" fuelbed models with upslope convection
winds. Slope uniformly covered with vegetation below fire site

Slope, percent
Elevation, feet

Fuel model (above valley floor) 20 30 40 50 60 70 80 90 100

Model 3 0-300 7 1 1 2 1 5 1 7 1 9 2 2 1 2 2

Tall grass 300-600 7 1 1 3 1 5 1 7 1 9 2 2 2 2 3

600-900 7 I I 3 I 5 I 7 I 9 2 I 2 2 2 3

900-1 700 7 I n I I 5 I 7 I 9 2 I 2 2 2 3

1 700- 1 500 7 I \ 3 I 5 I 7 I 9 2 I 2 2 2 3

Model 4 0-300 1 3 1 9 2 3 2 7 3 3 3 3 5 3 7 3 9

Chaparral 300-600 1 3 1 9 2 4 2 8 3 1 3 4 3 7 3 9 4

600-900 X i I QJ 2 4 2 g 3 2 3 5 3 g 4 4 2

900-1 200~y KJ \J -L ^ KJ \J 1 3 I 9 2 4 2 9 3 2 3 6 3 8 4 1 4 3

1 700- 1 500 I 3 I 9 2 4 2 9 3 3 5 3 9 4 4 3

Model 12 0-300 7 1 I 2 1 4 1 6 1 8 2 2 1 2 2

Medium conifer 300-600 7 1 I 2 1 5 1 7 1 8 2 2 1 2 2

slash 600-900 7 1 1 1 5 1 7 1 9 2 2 1 2 3

900-1200 7 1 1 2 1 5 1 7 1 9 2 2 2 2 3

1200-1500 7 1 1 3 1 5 1 7 1 9 2 2 2 2 3

Model 13 0-300 9 1 3 1 6 1 9 2 1 2 4 2 5 2 7 2 8

Heavy conifer 300-600 9 1 3 1 6 1 .9 2 2 2 4 2 6 2 7 2 9

s 1 ash 600-900 9 1 3 1 6 2 2 2 2 4 2 6 T S 2 9

900-1200 9 1 3 1 7 2 .0 2 2 2 5 2 7 2 8 3

1200-1500 9 1 3 1 7 2 2 3 2 5 2 7 2 9 5

Table 3. Midflame windspeeds (mi/h) for "deep" fuelbed models with upslope convection
winds. Slope bare of vegetation below fire site

Slope, percent
Elevation, feet

Fuel model (above valley floor) 20 30 40 50 60 70 80 90 100

Model 3 0-300 1 3 1 9 2 4 2 8 3 1 3 4 3 6 3 8 4

Tall grass 300-600 1 3 1 9 2 4 2 8 3 2 3 5 3 7 4 4 1

600-900 1 3 1 9 T 4 2 9 3 2 3 6 3 8 4 1 4 2

900-1200 1 4 1 9 2 5 2 9 3 3 3 6 3 9 4 1 4 3

1200-1500 1 4 2 2 5 2 9 3 3 3 7 4 4 2 4 4

Model 4 0-300 2 7 3 7 4 4 5 5 5 5 8 6 1 6 3 6 5

Chaparral 300-600 2 7 3 8 4 6 5 3 5 8 6 2 6 6 6 8 7

600-900 2 8 3 9 4 8 5 5 6 1 6 5 6 9 7 2 7 5

900-1200 2 8 3 9 4 9 5 7 6 3 6 8 7 2 7 5 7 8

1200-1500 2 8 4 5 5 8 6 5 7 7 4 7 8 8 1

Model 12 0-300 1 3 1 8 2 2 2 6 3 3 2 3 5 3 7 3 8

Medium conifer 300-600 1 3 1 8 2 3 2 7 3 3 3 3 6 3 8 4

slash 600-900 1 3 1 8 2 3 2 7 3 1 3 4 3 7 3 9 4 1

900-1200 1 3 1 8 2 3 2 8 3 1 3 5 3 7 3 9 4 1

1200-1500 1 3 1 9 2 4 2 8 3 2 3 5 3 8 4 4 2

Model 13 0-300 1 6 2 3 2 9 3 3 3 7 4 4 3 4 5 4 7

Heavy conifer 300-600 1 7 2 3 2 9 3 4 3 8 4 2 4 5 4 7 4 9

s lash 600-900 1 7 2 4 3 3 5 3 9 4 3 4 6 4 9 5 1

900-1200 1 7 2 4 3 3 6 4 4 4 4 7 5 5 2

1200-1500 1 7 2 4 3 1 3 6 4 1 4 5 4 8 5 1 5 3
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APPENDIX A; CONVECTIVE SLOPE WIND MODEL

The equations describing steady two-dimensional turbulent flow of a compressible fluid
under the combined influences of heat transport and gravity- induced body force can be
written as:

I^(PU) ^ I^(PV) =0
_

(1)

—(pu ) + —(puv) = --^+— T+ — T+pg (2)3x^ 3y^ 9x 3x xx 3v xy °x

3, -,3, 2, 3p3 3—(puv) . ^(PV ) . - ^ . — . ^ T^,y . Pgy (3)

9 9 9 3—(puJ) + —(pVj) = T—(UT + VT ) + —[UT + VT ) (4)
3x 3y 3x XX xy 3y xy yy

3x^x 9y y X *y

where

x is the direction along the slope, positive upward

y is normal to the slope, positive upward

p is the mean fluid density

(u,v) is the mean fluid velocity vector

p is the mean static pressure

T.. is the mean turbulent stress in the i plane, direction j
ij r J J

(gj^jgy) is the gravity acceleration vector

J is the mean total enthalpy of the fluid

(q ,q ) is the heat flux vector,^x ^y

Here we have neglected viscosity and correlations of fluctuations in the velocity field
with density and pressure fluctuations, and used the fact that t.. = x...

Assuming that air is a perfect gas, we have:

J = C^T + (u" + v^)/2 (5)

where T is the absolute temperature of the gas and is its specific heat capacity at

constant pressure. Multiplying the momentum equations (2) by u and (3) by v and summing
gives the equation for the kinetic energy contribution to J. Subtracting this result from
the energy equation yields the equation for the transport of sensible heat:

„ , 3T 3T^ 3p 3p 3 3 ri/ripC (u— + V—) = UT^ + v-r^ - T-q - T-q + {KE}. (6)
p 3x 3v^ 3x 3y 9x^x 3y^y
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The term

{KE} = T T— +T (t— + T— (7)xx3x yy3y xyV3y 3x/ ^ ^

represents the generation of sensible heat through dissipation of kinetic energy by turbu-

lent stress -strain work. This term can be neglected because the Mach number of the flow

is very small; it has a magnitude relative to the others of the order of the square of

the Mach number.

We now introduce the additional assumptions and approximations that describe the prob-
lem at hand:

1. The static pressure field is imposed by the ambient (quiescent) atmosphere and is

not modified by the velocity field of the fluid flowing near the surface of the slope.

2. The mean velocity normal to the slope (v) vanishes everywhere'.

This approximation implies that the boundary- layer flow along the surface of the slope
evolves very slowly with distance {x) along the slope compared to the variations in the

velocity and temperature fields normal to and near the surface of the slope. It also re-

quires that the pressure gradient and body force terms of the normal momentum equation (3)

be balanced by the turbulent normal stress gradient (-^^^^3 . This implies a substantial

variation with distance normal to the slope (y) of the normal turbulence intensity but the
maximum value needed to satisfy (3) can be shown to be quite modest.

3. We neglect any variation with distance (x) along the slope of the temperature and

velocity in comparison with their variations with distance normal to the slope (y)

.

Invoking these approximations and their immediate implications reduces the equation
set dramatically. The sensible heat equation becomes

u |£- = -p g(sin a)u = ^—q - (8)
dx a 3y y

and the momentum equation parallel to the slope

9p . . 3
- pg = -p gsm ot + pgsm a = -t-t [9j

3x ^x a* ^ 3y xy

where p represents the density of the ambient atmosphere and a is the slope angle from
horizontal. For a perfect gas

p - pRT (10)

where R is the gas constant; hence

J - T_

3y'xy '^a*' f"

T is the temperature of the ambient atmosphere (a weak function of elevation)

.

The model is completed by specifying phenomenological forms for the turbulent trans-

port of sensible heat and momentum. We follow the example of Defant (1951) and posit

the forms

:

^
tt^,, = -P^g sin a(

—

-—-). (11)

12



1 3

p 9y xy m . 2
dy

P C 9y>
a p

' 3v

(12)

(13)

The phenomenological factors K and K, have the dimensions of length /time and are usually
m h

termed "eddy diffusivities" (Tennekes and Lumley 1972) . They are almost always treated as

constants for mathematical manipulations but are invariably found to be relatively strong
functions of local conditions when measurement data are manipulated to determine their
numerical values. But physical reasoning and dimensional arguments support the supposition
that they are approximately equal no matter what their values. Usually the modeler treats
these parameters as constants of flow structure (not fluid properties) and determines appro-
priate numerical values for them after the fact by matching observed and predicted features
of the flow field or by invoking arguments for internal model consistency. IVe shall follow
the latter course in this development and also assume at the outset that

K = K = K. (14)
m It

We shall treat the parameter K as a constant in developing the model. Then, using the
shear stress (t^^) distribution predicted by the model, we apply a well accepted formula

to calculate the local value of the parameter K. We average this expression over the im-

portant part of the boundary layer and so find a self-consistent average value to use for
the parameter K.

Expressing the temperature in the boundary layer over the heated slope as the excess

(6) above the local ambient temperature

T = T + e (15)
a

'

and using (12) in (11) and (13) in (8) gives the final form of the model:

K = - g " e (16)

3y T
a

K^=^-^i^u (17)

3y p

A remarkable feature of this model is that the equations (16) and (17) are formally
identical to those of Defant (1951) who treated the similar problem of valley ventilation
by upslope convection during early daytime heating. The mechanisms at play in these two

instances are subtly but importantly different. Note, for instance, that in tlie develop-
ment of this model, the temperature lapse rate of the ambient atmosphere does not expli-
citly enter. In Defant 's development, the group g/C (which is the dry adiabatic lanse

rate) in (17) is replaced by the lapse rate of the potential temperature in the ambient
atmosphere, which measurement has determined usually to be zero for summertime afternoon
conditions under which the upslope convective wind is generally the strongest (Schroeder
and Buck 1970), but which is often positive over valleys in the morning when the surface
temperature is lowest. So while the formalism of Defant 's model applies directly here,
the parameter groups are quite different and Defant 's length scale is much greater than
that found here. Indeed Defant 's solution and the present one are formally identical to

the rigorous solution of this problem for laminar flow found by L. Prandtl much earlier
(to be found in translation in Prandtl 1952).

13



Differentiating (16) twice and using (17) gives

(18)
a u /gsina\ u

wh

,4 V K / C T
dy ^ p a

ich establishes a characteristic length scale, I, for the problem as

2 1/4
,4K C T \

'

I- (19)

\ (g sm a) /

where the numerical factor 4 is introduced for convenience in writing the solution to

(18). In terms of the dimensionless normal distance from the surface of the slope

^ = y/i ' (20)

(18) becomes

,4^ + 4u = 0.
•

(21)

This equation has the general solution

u = (A sin <; + B cos c)exp(i;) + (C sin C + D cos (;)exp(-c). (22) .

The positive exponential solutions are dismissed as nonphysical and the boundary condition

u(0) =0 ' (23)

requires D to be zero, leaving

u = C(sin c)exp(-c) • (24)

In terms of the temperature excess at the surface of the slope, 6 , and the maximum wind-

speed, u^, which occurs at c = Tr/4, these profiles are

e = e^(cos i;)exp(-C) (26) -

u = u^(sin ?)exp(-c) /J exp(TT/4). (27)

The profiles are graphed in the text, figure 2.

The validity of the profile of windspeed beyond the point at which it reaches maximum
is questionable, and it is definitely not to be extended beyond i; = -n/I where the model

predicts that the temperature falls below ambient. Near the surface, however, the profiles

are quite reasonable, the velocity increasing linearly with distance normal to the surface
and the temperature linearly declining. In fact, the windspeed profile can be well appro-

ximated up to about 0.42. (where I = (tt/4)£ is the distance, along the normal to the
^ m m .

"

slope, to the maximum windspeed) by the form

u = 2u y/£ (y < 0.4£ ) . (28)
m m — m

In this linear profile regime, the turbulent shear stress predicted by this model (eq. 12)

is constant at a value of

14



T = p K 1^ = 2p u K/£ H p u;. (29)
xy a 5y a ni ni a *

Above this constant-stress zone, the shear stress declines rapidly and is zero at the
height i^^) of the maximum windspeed. Many measurements have been made of atmospheric

shear layers to determine the structure of the turbulence fields. A general finding of
such measurements is that the apparent eddy diffusivity, K, is proportional to the dis-
tance from the surface for constant shear layers (Tennekes and Lumley 1972, Ch. 3):

K = ku^y (30)

where k is von Karman's constant, with a value of 0.4. We use this relationship to en-

force internal consistency on the model by equating the average value of K from eq. (30)
over the constant-shear layer to the value of K used as a parameter in the model. Hence
we require

K = ku^d 0.4£ ) (31)* 2 m

where , from (29)

,

u^ = (2u K/£ )^/^ (32)

and so

K = f2(0. 2k) "^^u £ = nu £ (33)
V /mmmm

where n is 0.0128.

From (25) , (26) , and (27) , we have the relationship between and u^ as

u = e'^^'^'^e (C /2T )'^^^
(34)m o p a ^ '

or

u = 0.5859 , m/s (35)mo
for e in °C and T = 305° K.

o a

4
Using (33) in (19) allows us to relate £ (= — £ ) and u , thus closing the model

:

IT m m

£ = /2 e"^^'^(^)^nC e /g sin a (36)m 4 p 0^

or

2

£ /u = 2n(x) (C T )^''Vg sin a. (37)m m 4 p a ^
For an ambient temperature of 305°K (90°F), this ratio becomes simply

£ /u = 0.892/sin a (sec). (38)mm

The relationship between u^ and elevation above the valley floor graphed in the text

rests on the assumption that the temperature lapse rate of the ambient atmosphere is

adiabatic, or about 0.01°C/m, so

6 = 5.0 + O.Olz, °C (39)
o

where z is in meters. Equations (35), (38), and (39) represent the core of this model.
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The windspeed profile with distance normal to the surface (27) can be written in terms of

the distance Z as
m

u/u^ = /2 exp(^/4(l - y/£j)sin(J ^) . (40)
'm

This profile is used in the application of the model to the prediction of surface fire

behavior as described in the text (equation 2) and detailed in appendix B.
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APPENDIX B: MIDFLAME WINDSPEED VALUES

The "midflame windspeed" input required by the mathematical model (Rothermel 1972) used
to predict wildland fire behavior"^ has been interpreted as the mean windspeed of the inci-

dent wind field over the vertical extent of the flame (Baughman and Albini 1980) . Using
this approach, the windspeed profile developed by the theory of appendix A is used to cal-

culate an average windspeed over the "height" range from the top of the fuelbed to the tip
of the flame.

The stylized fuel models employed to characterize wildland fuels (Albini 1976) can be
described for the present purpose by the fuelbed height, H, and the height of a flame ex-

tending above the fuelbed a distance Hp. For each fuel model, a representative flame height
was established by using the flame length for that fuel model burning under conditions of

no wind, no slope, and typical fuel moisture content. Table 4 summarizes the heights used
in this application. Note that while 13 stylized fuel models are described in Albini (1976),
only the 10 listed in table 4 are likely to be encountered on open slopes which would ex-

perience convective wind.

For the present purpose, the heights listed in table 4 are taken to be the same as

the distances measured normal to the slope for the same typical fuel descriptions.

Table 4. Fuelbed heights and flame heights for 10 stylized wildland
fuel models that may be encountered on open slopes

Fuel model Fuelbed height Typical flame height

ft m ft m

1. Short grass 1.0 0.30 1.0 0.30

2. Open timber (grass 1.0 .30 1.6 .49

and understory)

3. Tall grass 2.5 .76 2.7 .82

4. Chaparral 6.0 1.83 4.9 1.49

5. Brush 2.0 .61 .92 .28

6. Dormant brush, 2.5 .76 1.4 .43

hardwood slash

10. (Used for) overgrown 1.0 .30 1.6 .49

logging slash

11. Light logging slash 1.0 .30 1.1 .34

12. Medium logging slash 2.3 .70 2.7 .82

13. Heavy logging slash 3.0 .91 3.7 1.13

See footnote 1.
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In the situation that the fire has burned up the slope and consumed the fuel below
the present fire position on the slope, the location of the plane y = used as a mathe-
matical boundary on which the windspeed vanishes is clearly the surface of the slope.

But when a fire starts on a slope, the slope surface below the fire location will pre-
sumably be covered by vegetation. Here we presume that the fuelbed used to describe the

fire behavior extends below the fire when this situation arises. The complication intro-
duced by this surface covering is that the vegetation offers such resistance to fluid
motion that the windspeed profile is displaced away from the surface of the slope by an

amount nearly equal to the height of the vegetation cover. The exact location of the

mathematical boundary surface for the wind field is uncertain in this case. Because
we must have a zero-windspeed boundary location to proceed, we simply choose it to be
at 77 percent of the height of the fuelbed. The factor 0.77 is not entirely arbitrary.
It coincides with the height at which the windspeed would mathematically extrapolate to

zero when the windspeed profile over the vegetation is the logarithmic profile typical
of constant shear layers under neutral stability (Albini and Baughman 1979).

Using the assumptions outlined above, the midflame windspeed can be written as

Hp+IlrAH

u= J u(y)dy/H (1)

H-AH

where

Since

u(y) is the windspeed at the normal distance y from the zero-velocity
surface of the slope

H is the height of the fuelbed
H„ is the height of the flame above the fuelbed
r

AH is the distance from the physical surface of the slope to the

zero-velocity surface.

u[y) = u /2 sin(TTv/4£ )exp(y(l - y/!l )) (2)^ m - m ^ 4 ^ m

(appendix A, eq. 40), the integral is readily found, giving

- 2 ^'m IT a
u/u^ "

^ iF
/2((sin X + cos x)exp(- - x)) |^ (3)

F

where

a - j(H - AH)/£^ (4)

b = j(Hp + H - AH)/£^. (5)

Whenever the upper limit of the integral in (1) does not exc_eed the height at which
the windspeed is essentially linear with y, the expression for u simplifies greatly.
Using eq. (28), appendix A

u(y) = 2u v/£ (6)
m m

gives

u = (2u /I ) (H - AH + H^/2) . (7)mm F

Because of the relationship between u^ and (eq. 38, appendix A), the competing effects
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of higher windspeed and greater length scale cancel, making u a function only of the fuel-

bed parameters and the slope angle:

u = (2/0.892) (H - AH + H^/2)sin a (8)
r

where the units of u are the length units of H-AH+Hp/2 per second. For fuel models 1, 2,

5, 6, and 11, this simple approximation applies reasonably well for all cases. For fuel

models 3, 4, 12, and 13, it applies only when

H - AH + < 0.4£ . (9)
F — m

For these four models, (8) represents a rough upper bound for the midflame windspeed.
The tables given in the text are calculated from (3) for all fuel models, but (8) can

be used for quick manual estimation where it applies.
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